Physical Origin of the Differential Voltage Minimum Associated With Lithium Plating in Li-Ion Batteries
نویسندگان
چکیده
منابع مشابه
Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملHomogeneity of lithium distribution in cylinder-type Li-ion batteries
Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm(3) has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously...
متن کاملThe Effects of Defects on Localized Plating in Lithium-Ion Batteries
This work investigates how local cell defects can induce local lithium deposition and dendrite growth in a lithium-ion cell that appears to otherwise be performing correctly. Using local pore closure in the battery separator as a model defect, we experimentally demonstrate the occurrence of local lithium deposition during cycling in coin cells containing deliberately manufactured local regions ...
متن کاملTransparent lithium-ion batteries.
Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional appr...
متن کاملOrigami lithium-ion batteries.
There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Meeting abstracts
سال: 2021
ISSN: ['2151-2043', '2152-8365', '2151-2035', '1091-8213']
DOI: https://doi.org/10.1149/ma2021-024466mtgabs